Measurements of short distances between trityl spin labels with CW EPR, DQC and PELDOR.
نویسندگان
چکیده
Trityl based spin labels are emerging as a complement to nitroxides in nanometer distance measurements using EPR methods. The narrow spectral width of the trityl radicals prompts us to ask the question at which distance between these spin centers, the pseudo-secular part of the dipolar coupling and spin density delocalization have to be taken into account. For this, two trityl-trityl and one trityl-nitroxide model compounds were synthesized with well-defined interspin distances. Continuous wave (CW) EPR, double quantum coherence (DQC) and pulsed electron-electron double resonance (PELDOR) spectra were acquired from these compounds at commercial X-band frequencies. The data analysis shows that two of the compounds, with distances of up to 25 Å, fall into the strong coupling regime and that precise distances can only be obtained if both the spin density delocalization and the pseudo-secular part of the dipolar coupling are included in the analysis.
منابع مشابه
Pulsed EPR dipolar spectroscopy at Q- and G-band on a trityl biradical.
Pulsed electron paramagnetic resonance (EPR) spectroscopy is a valuable technique for the precise determination of distances between paramagnetic spin labels that are covalently attached to macromolecules. Nitroxides have commonly been utilised as paramagnetic tags for biomolecules, but trityl radicals have recently been developed as alternative spin labels. Trityls exhibit longer electron spin...
متن کاملTrityl radicals: spin labels for nanometer-distance measurements.
Spin labelling with trityls: to gather information about the structure and dynamics of trityl radicals, spin-labelled polymers were measured with pulsed electron-electron double resonance (PELDOR) and double-quantum coherence (DQC). This study demonstrates that trityl radicals have great potential as spin labels that eliminate some limitations of nitroxide spin labels.
متن کاملConformationally restricted isoindoline-derived spin labels in duplex DNA: distances and rotational flexibility by pulsed electron-electron double resonance spectroscopy.
Three structurally related isoindoline-derived spin labels that have different mobilities were incorporated into duplex DNA to systematically study the effect of motion on orientation-dependent pulsed electron-electron double resonance (PELDOR) measurements. To that end, a new nitroxide spin label, (ExIm)U, was synthesized and incorporated into DNA oligonucleotides. (ExIm)U is the first example...
متن کاملDemystifying EPR: A Rookie Guide to the Application of Electron Paramagnetic Resonance Spectroscopy on Biomolecules
Electron Paramagnetic Resonance (EPR) spectroscopy, also known as Electron Spin Resonance(ESR) especially among physicists, is a strong and versatile spectroscopic method forinvestigation of paramagnetic systems, i.e. systems like free radicals and most transition metalions, which have unpaired electrons. The sensitivity and selectivity of EPR are notable andintriguing as compared to other spec...
متن کاملGd3+-Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance.
Electron paramagnetic resonance spectroscopy in combination with site-directed spin labeling is a very powerful tool for elucidating the structure and organization of biomolecules. Gd3+ complexes have recently emerged as a new class of spin labels for distance determination by pulsed EPR spectroscopy at Q- and W-band. We present CW EPR measurements at 240 GHz (8.6 Tesla) on a series of Gd-ruler...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 45 شماره
صفحات -
تاریخ انتشار 2013